
Telecommunication - option réseaux, sécurité et objet connecté

Alexandre Olivié
alexandre.olivie@bordeaux-inp.fr

Interopérabilité, cryptographie et
télécommunication de la première station de

surveillance de la pollution lumineuse au panama

Rapportrice : Hasnaa Aniss
hasnaa.aniss@univ-eiffel.fr

Tuteur de stage : José Robles
jrobles@indicatic.org.pa

2025

Table des matières

Table des matières

1 Introduction 5

2 Présentation de l’entreprise 7

3 Contexte 9

4 Analyse de l’existant 10

5 Cahier des charges 11
5.1 Vue d’ensemble . 12

6 INDI 14
6.1 Fonctionnement . 14

7 Partie 1 : De l’éxécution du code jusqu’au moment d’avant l’envoie 16
7.1 Diagramme général et explication . 16
7.2 Exécution de main.c et traitement des données de chaque équipement (a) 17
7.3 Fonction execution, Séquenceur (b) . 18
7.4 Fonction Maketram, organisation des métadonnées (c) 19
7.5 Fonction Log_NAS, information de connexion (d) . 19
7.6 Fonction Connect_To_NAS, transfert des données vers le NAS (e) 20
7.7 Fonction ChecksumGenerate, réalisation des empreintes numériques (f) 22

8 Partie 2 : Chiffrement des empreintes numériques 23
8.1 Diagramme général et explication . 23
8.2 Première étape : partage de clé secrète de Shamir . 23
8.3 Deuxième étape : César généralisé appliqué à une matrice numérique 24
8.4 Troisième étape : Application d’un masque binaire . 25

9 Partie 3 : Transfert des données 28
9.1 Raisons ayant conduit à l’adoption du protocole SFTP 28

9.1.1 Benchmarking Download et Upload SFTP/FTPS 29
9.2 Tailscale . 30

10 Partie 4 : Traitement des données lors de leur réception 32
10.1 Diagramme général et explication . 32
10.2 Partie a : Recherche de fichier CryptFile existant . 32
10.3 Partie b : Récupération des valeurs du fichier CryptFile.txt 33
10.4 Partie c : Réalisation du déchiffrement . 34
10.5 Partie d : Organisations des fichiers . 34

11 Partie 5 : Déchiffrement des empreintes numériques 35
11.1 Diagramme général et explication . 35
11.2 Première étape : Opération inverse du XOR . 35
11.3 Deuxième étape : Opération inverse de César . 35
11.4 Troisième étape : Interpolation lagrangienne . 36

12 Partie 6 : Interface, lancement et contrôle de la station 38
12.1 Interface et lancement . 38
12.2 Contrôle de la station . 39

1

Table des matières

13 Transfert de savoir 40

14 Diagramme de Gantt et KPI (Key Performance Indicator) 41
14.1 Explication du diagramme de gantt et point de vue sur l’organisation du temps 41
14.2 KPI . 41
14.3 Conclusion sur la gestion de projet . 42

15 Conclusion 44
15.1 Les perspectives futures du projet . 44

16 Références 45

2

Liste des figures

Liste des figures

1 Logo de INDICATIC . 7
2 Édifice des Laboratoires de Recherche et d’Innovation 7
3 Organigramme du Conseil d’Administration et des effectifs de INDICATIC AIP 8
4 Flux des traitements entre station et NAS . 11
5 Vue d’ensemble du fonctionnement du code d’interopérabilité 13
6 Résultat commande indiserver . 15
7 Résultat commande indi_getprop . 15
8 Diagramme Partie 1 . 16
9 Diagramme partie a . 17
10 Déroulement du script alpy.sh . 17
11 Extrait du script alpy.sh concernant la figure 10 . 18
12 Diagramme Partie b . 18
13 Exemple nommage fichier info . 19
14 Script de la fonction Maketram . 19
15 Script de la fonction Log_NAS . 19
16 Diagramme Partie e . 20
17 Organisation fichier count.txt, cas aucun fichier existant 21
18 Organisation fichier count.txt, cas fichier existant . 21
19 ChecksumGenerate fonction . 22
20 Diagramme Partie 2 . 23
21 Script de la fonction caesar . 24
22 Traitement des données jusqu’à la deuxième étape . 25
23 Script de la fonction xor . 26
24 Application du masque binaire . 26
25 Traitement XOR jusqu’à écriture dans le fichier CryptFile.txt 27
26 Fichier CryptFile.txt . 27
27 Vue d’ensemble du transfert des données . 28
28 Script de l’envoie des fichiers . 28
29 Comparaison vitesse de transferts des CLI lftp et curl, capture d’écran réalisée à partir

du site [sftptogo.com], consulté le [13 Mars 2025]. 29
30 Envoie de différentes tailles, capture d’écran réalisée à partir du site [sftptogo.com],

consulté le [13 Mars 2025]. 30
31 Interface de Tailscale, capture d’écran réalisée à partir du site [tailscale.com], consulté

le [17 Mars 2025]. 31
32 Diagramme Partie 4 . 32
33 Diagramme Partie a . 33
34 Vérifications des empreintes numériques . 34
35 Diagramme Partie 5 . 35
36 Traitement des données déchifrement . 37
37 Diagramme Partie 6 . 38
38 Organisation des tâches dans Crontab . 39
39 Organisation GitHub . 40
40 Capture d’écran du dépôt GitHub . 40
41 KPI . 41
42 Diagramme de Gantt . 43

3

https://sftptogo.com/blog/sftp-vs-ftps-benchmarks/
https://sftptogo.com/blog/sftp-vs-ftps-benchmarks/
https://tailscale.com/

Liste des tableaux

Liste des tableaux

1 Rôles des composants dans l’architecture INDI . 14
2 Correspondance entre les types de demande et les propriétés INDI 15
3 Tableau XOR . 26
4 Comparaison entre les protocoles FTP, FTPS et SFTP 30

4

1 Introduction

Abstrait

Ce rapport présente le développement et le fonctionnement d’un code d’interopérabilité conçu dans le cadre
d’un projet inédit au Panama dédié à l’étude de la pollution lumineuse, l’interopérabilité signifie la capacité
de différents systèmes, appareils ou logiciels à échanger, comprendre et utiliser mutuellement leurs données
et leurs services, même s’ils ont été conçus de manière indépendante ou avec des technologies différentes.
L’accent est mis sur le transfert fluide, sécurisé et intègre des données capturées par les différents appareils
de mesure, vers un NAS (Network Attached Storage) hébergé dans les locaux de l’INDICATIC (Instituto de
Innovación, Investigación y Desarrollo de las Tecnologías de la Información y las Comunicaciones.) AIP.
Chaque section du rapport détaille les mécanismes mis en œuvre, afin de permettre une compréhension
globale du fonctionnement du code et des équipements impliqués dans le projet avec à la fin la démonstration
des résultats obtenus ainsi que la gestion du projet. À la date de rédaction, dans la région centraméricaine,
il n’existe pas encore de réseau de suivi de la pollution lumineuse, bien que des efforts notables soient
observés dans plusieurs pays développés. Il convient également de mentionner un travail significatif sur la
pollution lumineuse réalisé à La Réunion (latitudes tropicales), qui constitue une référence importante dans
ce domaine.

1 Introduction

Ce rapport présente le travail effectué durant un stage de 24 semaines réalisé en troisième année d’études
d’ingénieur au sein du laboratoire INDICATIC situé au Panama. Dans ce contexte, l’informatique joue
un rôle clé en facilitant l’intégration des nouvelles technologies au sein des systèmes existants, no-
tamment pour le traitement des données complexes et leur interopérabilité entre différentes stations.
L’objectif principal de ce projet est de développer un code permettant le transfert de données hété-
rogènes entre différents appareils de manière interopérable. Le système devra gérer efficacement une
grande quantité de données — environ 120 Go par nuit et par station en assurant un transfert fluide
vers le système de stockage situé dans les locaux de l’INDICATIC AIP. Cette étude est essentielle pour
garantir l’efficacité et la fiabilité des systèmes de transmission de données dans des environnements à
haute capacité. Pour atteindre cet objectif, plusieurs aspects du système devront être abordés, incluant
la réception des données des équipements, leur chiffrement, leur transfert, leur réception et
traitement dans le système de stockage, ainsi que la mise en place de méthodes pour garantir
l’autonomie du système. Le développement de ce code se fonde sur l’utilisation de solutions techniques
spécifiques, telles que le logiciel Tailscale pour la mise en réseau, et une méthode de chiffrement et de
déchiffrement rigoureuse pour assurer la sécurité et l’intégrité des données. Le rapport se structure en
six sections principales. Chaque section est dédiée à un aspect spécifique du développement du code
d’interopérabilité, allant de l’analyse des besoins à la mise en œuvre des solutions techniques. À travers
ce processus, il est analysé les éléments techniques sous-jacents, en expliquant les choix faits à chaque
étape pour optimiser les performances et la sécurité du système.

L’ensemble des 6 différentes parties qui expliquent le fonctionnement du code d’interopérabilité seront
expliquées respectivement de la manière suivante :
La première partie expose le processus de réception des données provenant de chaque équipement par
la station, ainsi que leur traitement. Un diagramme global illustre les différentes composantes abordées,
identifiées de a à f . Chaque composante est ensuite analysée en détail dans les sous-sections qui lui
sont spécifiquement consacrées.
La deuxième partie présente le raisonnement sous-jacent au chiffrement réalisé. Trois étapes distinctes
sont décrites, chacune illustrant un aspect clé du processus. Un schéma accompagne l’explication et met
en évidence l’enchaînement de ces étapes à l’aide d’une valeur fictive, afin de faciliter la compréhension.
La troisième partie détaille le mécanisme de transfert des données, élément crucial pour garantir un
fonctionnement fluide de la station. Le protocole employé est présenté et justifié en fonction des exi-
gences techniques et sécuritaires. Par ailleurs, le logiciel Tailscale est introduit comme solution de mise
en réseau. Son rôle dans le système, ainsi que les raisons ayant motivé son adoption par la station, sont
expliqués de manière approfondie.

5

1 Introduction

La quatrième partie aborde la réception des données et leur traitement, suivant une logique similaire à
celle de la première partie. Un diagramme global illustre les différentes composantes considérées, identi-
fiées de a à d, et chacune d’elles est analysée en détail dans les sous-sections qui lui sont spécifiquement
consacrées.
La cinquième partie présente le raisonnement sous-jacent au déchiffrement effectué à partir du résultat
du chiffrement. Trois étapes distinctes sont détaillées afin d’illustrer le cheminement vers le résultat
attendu. Un schéma accompagne l’explication et représente chacune des étapes, en utilisant la même
valeur fictive que celle employée lors du chiffrement, afin d’assurer la cohérence de l’ensemble. Puis, la
sixième partie expose la méthode pensée pour rendre la station totalement autonome.

Enfin, il sera mis en lumière le transfert des connaissances liées au code développé, assurant une
compréhension et une pérennité de son utilisation. Elle est suivie de la présentation du diagramme de
Gantt et des indicateurs clés de performance, permettant d’évaluer l’efficacité de la gestion de projet
adoptée durant le stage. Une première conclusion apporte une vue d’ensemble sur l’organisation et la
répartition des tâches confiées, mettant en évidence les points forts du processus mis en place. Enfin,
une seconde conclusion souligne l’aboutissement du développement du code, la pertinence des résultats
obtenus, et propose une vision prospective quant à l’évolution future du projet.

6

2 Présentation de l’entreprise

2 Présentation de l’entreprise

L’Institut National INDICATIC AIP a été fondé le 4 octobre 2019 en tant qu’association d’intérêt
public (AIP 1) avec une personnalité juridique.

La mission de l’INDICATIC AIP est d’attirer des talents et de les orienter vers le développement tech-
nologique bénéfique pour le Panama, tout en contribuant au progrès technologique mondial. L’objectif
principal est de positionner le Panama à la frontière de la science, de la technologie et de l’innovation
dans le domaine des TIC 2.

Les objectifs spécifiques de l’institut incluent le recrutement de chercheurs de haut niveau, la création
d’un environnement propice à la recherche et développement (R&D) de pointe, le développement de
connaissances et de technologies avancées, et la contribution à un agenda national de R&D. De plus,
l’INDICATIC AIP s’engage à former des ressources humaines de qualité.

Dans le cadre de son engagement à promouvoir l’innovation, l’INDICATIC réalise des appels à projets
et propose également des projets dans le domaine de l’informatique. Ces initiatives visent à répondre
aux défis technologiques actuels, en collaborant avec des partenaires nationaux et internationaux pour
développer des solutions avancées. Le laboratoire travaille activement à attirer des financements et à
proposer des projets de recherche dans des domaines clés des technologies de l’information et de la
communication, tout en soutenant l’écosystème d’innovation technologique au Panama.

L’institut est situé sur la Vía Centenario, au Campus Víctor Levis Sasso de l’Université Technologique
de Panama, dans l’Édifice des Laboratoires de Recherche et d’Innovation, au 3ème étage. L’organi-
gramme de son conseil d’administration est représenté dans la figure 3.

Figure 1 – Logo de INDICATIC

Figure 2 – Édifice des Laboratoires de Recherche et d’Innovation

1. Association d’Intérêt Public.
2. Technologies de l’Information et de la Communication.

7

2 Présentation de l’entreprise

Dr. Eduardo Ortega Barría
Président

Secrétariat National
de Science, Techno-
logie et Innovation

Dra. Ángela Laguna Caicedo
– Rectora, Universidad
Tecnológica de Panamá

Prof. Jorge R. Arosemena R.
Secrétaire

Fondation Ciudad Del Saber

Lic. José Cuervo
Trésorier

Chambre Panaméenne
de Technologies d’In-
formation, Innovation
et Télécommunications

Lic. Luis Oliva
Vocal

Autorité Nationale pour l’In-
novation Gouvernementale

Dr. Philippe Aniorté
Directeur

Institut National de Re-
cherches Scientifiques
Avancées en Technolo-
gies de l’Information et
de la Communication

Administration
de INDICATIC

Investigation appliquée
/ IT de INDICATIC

Dr. José Robles
Dra. Milagros Jaén Vargas

Dr. Agustin Guerra

Figure 3 – Organigramme du Conseil d’Administration et des effectifs de INDICATIC AIP

8

3 Contexte

3 Contexte

Le code d’interopérabilité permet l’envoi autonome et fluide de données issues de formats hétérogènes
(FIT, RAW, CSV, NEF). Lors de leur réception, l’intégrité des données est systématiquement vérifiée à
l’aide d’un procédé cryptographique adapté à chaque station émettrice, comme détaillé dans les sections
9 et 12. Ce mécanisme garantit la fiabilité des échanges et la sécurité des données transmises.
Le code doit également s’adapter dynamiquement à la station dans laquelle il est déployé. Cela signifie
que les données envoyées doivent être correctement dirigées vers le répertoire approprié, en fonction de la
station d’origine. Cette interopérabilité est essentielle pour assurer la continuité du service automatique
de chaque station.
En cas de perte de connexion Internet, de défaillance des appareils connectés à la station ou de surcharge
de la mémoire de stockage, le code est conçu pour réagir intelligemment : certains processus sont
temporairement arrêtés, puis relancés automatiquement dès que les conditions redeviennent favorables.
Ce comportement garantit une robustesse opérationnelle même dans des environnements instables.
Le climat chaud du Panama, combiné à la charge de travail élevée des stations, peut entraîner des
dysfonctionnements matériels. Bien que les équipements soient compatibles avec Windows, ce système
est jugé trop lourd et inadapté aux objectifs du projet, qui forcerait à réaliser les codes avec WSL
(Windows Subsystem for Linux) 3. L’approche retenue repose sur l’utilisation de INDI (Instrument
Neutral Distributed Interface), présentée dans la section 7, qui permet de contrôler les équipements
directement via du code C++. Cette solution permet l’installation d’un système Linux sur chaque station,
réduisant les tâches en arrière-plan et contribuant à limiter la température interne, ce qui diminue les
risques de panne.
Le traitement des données est réalisé en Shell, pour sa légèreté et son efficacité, tandis que la partie
cryptographique est développée en C, permettant une gestion fine de la mémoire et un code optimisé
permettant le renforcement des données par des mécanismes de chiffrement spécifiques à chaque station.
Les accès aux répertoires sont contrôlés par des permissions strictes, et une journalisation des transferts
est mise en place pour assurer la traçabilité et faciliter les audits.
Chaque station doit être capable de se contrôler entièrement de manière autonome et d’envoyer environ
120 Go de données par nuit. Ces données sont ensuite traitées et organisées dans le système de
stockage pour être finalisées au cours de la journée suivante.
Le code est publié sur GitHub afin de faciliter sa compréhension, son installation et son adaptation
à d’autres stations. Il est conçu pour être repris facilement par d’autres développeurs, permettant
des ajouts ou des modifications sans complexité excessive. Des tests automatisés, incluant des tests
unitaires, de charge et de robustesse, sont réalisés pour garantir la fiabilité du système. Des simulations
de panne sont également effectuées pour valider les mécanismes de reprise.
Dans une perspective de déploiement à plus grande échelle, l’utilisation de Tailscale, détaillée dans la
subsection 10.2, permet une communication directe entre les stations. Cela ouvre la voie à des envois
synchronisés, qui permettraient l’optimisation de la gestion de la mémoire du dispositif de réception
et renforcent la cohérence du réseau.

3. fonctionnalité de Windows qui permet d’exécuter un environnement Linux directement sur Windows, sans avoir
besoin d’une machine virtuelle ou d’un double démarrage.

9

4 Analyse de l’existant

4 Analyse de l’existant

En février, le projet en était encore à un état préliminaire. Les équipements de mesure étaient déjà
disponibles, mais aucun code ne permettait encore leur fonctionnement automatique. Jusqu’à cette
étape, il était nécessaire d’utiliser des applications spécifiques à chaque appareil pour pouvoir capturer
des données.
Les équipements impliqués sont les suivants : Jetson Orin Nano (station centrale), Alpy 600,
QHY16200A, Nikon D5600a, TESS-W, TESS-4C et un NAS Synology DS1821+.
Le Jetson Orin Nano joue le rôle de station : il centralise la connexion des différents instruments et
assure la transmission des données vers le système de stockage. Les caméras et spectromètres y sont
reliés directement par câble USB, tandis que les photomètres TESS-W et TESS-4C sont connectés en
Wi-Fi.
Le NAS Synology DS1821+ assure la gestion et le stockage des données collectées. Il permet
également un accès distant sécurisé et l’intégration d’outils complémentaires tels que Tailscale, ce qui
facilite la mise en réseau des différentes stations. Ainsi, l’architecture actuelle repose sur une station
centrale qui regroupe l’ensemble des équipements de mesure et un NAS qui centralise et sécurise le
stockage des données.

10

5 Cahier des charges

5 Cahier des charges

En prenant en compte les contraintes techniques du projet — telles que la diversité des formats de
fichiers (FIT, RAW, CSV, NEF), la nécessité d’un traitement autonome et sécurisé, la robustesse face
aux défaillances matérielles, et l’adaptabilité à chaque station — une architecture spécifique a été
pensée pour aboutir à un système d’interopérabilité fiable et évolutif. Ce système repose sur six parties
principales, chacune jouant un rôle déterminant dans le traitement, la sécurisation et le transfert des
données entre les stations et le système de stockage situé dans les locaux de INDICATIC AIP.
La Partie 1 est dédiée au traitement des données côté station. Elle représente le code d’interopéra-
bilité qui gère la préparation et l’envoi des informations vers le NAS, en tenant compte du répertoire
cible propre à chaque station. La Partie 2 se concentre sur la cryptographie, plus précisément sur le
chiffrement. Elle décrit la méthode utilisée pour générer les empreintes numériques des fichiers Payload
et info, qui sont ensuite enregistrées dans le fichier CryptFile.txt. Ces empreintes permettront au NAS
d’identifier les fichiers envoyés par chaque station et de garantir leur intégrité. La Partie 3 traite du
transfert des données. Elle couvre le mécanisme par lequel les fichiers préparés et chiffrés sont transmis
de la station vers le NAS, en assurant une fluidité même en cas de surcharge ou de perte de connexion
temporaire. Une fois les données reçues, la Partie 4 prend le relais pour effectuer leur traitement
côté NAS. Cette étape consiste à analyser, organiser et stocker les fichiers reçus dans le système de
stockage prévu à cet effet. La Partie 5 revient à la cryptographie, mais cette fois du point de vue
du déchiffrement. Le NAS utilise le fichier CryptFile.txt pour retrouver les empreintes numériques des
fichiers reçus et les comparer avec celles qu’il calcule lui-même, afin de vérifier leur intégrité et leur
authenticité. Enfin, la Partie 6 concerne l’interface de contrôle. Elle permet de lancer automatique-
ment les trois premières parties (traitement, chiffrement et transfert) sur une station, assurant ainsi le
bon fonctionnement du processus d’interopérabilité avec la couche cryptographique, tout en s’adaptant
dynamiquement à l’environnement matériel et logiciel de chaque station.
Également, il devait être possible de communiquer avec les appareils, Alpy, QHY et Nikon directement
avec des scripts.

Partie 6 : Interface de contrôle

Partie 1 : Traitement station

Partie 2 : Chiffrement

Partie 3 : Transfert

Partie 4 : Traitement

Partie 5 : Déchiffrement

Figure 4 – Flux des traitements entre station et NAS

11

5 Cahier des charges

5.1 Vue d’ensemble

Sur la figure 5 ci-dessous figure le schéma qui représente le code d’interopérabilité conceptualisé. Sur
le schéma sont représentées les différentes parties de 1 à 5. La partie 6 n’est pas représentée car celle-ci
est à part. Le fonctionnement du code de la partie 6 est présenté plus tard dans le rapport plus en
détail. Chaque partie est également expliquée plus en détail dans les différentes sections du rapport
qui leur sont accordées.

Afin d’avoir une compréhension plus facile du schéma, voici quelques explications. La partie 1 repré-
sentée en rouge sur le côté gauche représente les données capturées par les équipements. Par exemple,
pour le cas d’Alpy, le code va prendre les données d’Alpy s’il y en a, et va passer à QHYCCD ensuite
et ainsi de suite avec les autres équipements indéfiniment pendant le fonctionnement du code. Une fois
les données récupérées d’un équipement, les empreintes numériques des fichiers Payload et info (fi-
chier info qui contient les métadonnées) sont générées, puis la partie 2 (cryptographique (chiffrement))
est exécutée avant d’envoyer les données vers le NAS via le protocole SFTP 4(Secure File Transfer
Protocol).

Une fois que les données sont donc envoyées vers le NAS (partie 3), la partie 4 représente ce qu’il se passe
du côté du NAS, celui-ci regarde en boucle si des fichiers sont reçus dans les différents répertoires (les
différents chemins de chaque station). Si des fichiers sont reçus, alors est exécutée la génération de leur
empreinte numérique de la même manière que dans les stations avec le même algorithme (sha256 5) puis
la cryptographie de déchiffrement (partie 5) est effectuée sur les fichiers Payload et info reçus afin de
comparer les empreintes de chacun. Si elles correspondent, alors le NAS retourne à chercher des fichiers
à partir du chemin suivant. Si les empreintes ne correspondent pas, alors les fichiers concernés sont
supprimés et le NAS poursuit sa recherche de fichiers à traiter à partir du chemin suivant également.

4. protocole réseau sécurisé utilisé pour le transfert de fichiers.
5. algorithme de hachage cryptographique qui génère un hachage de 256 bits (32 octets) à partir de n’importe quelle
donnée d’entrée.

12

5 Cahier des charges

Figure 5 – Vue d’ensemble du fonctionnement du code d’interopérabilité

13

6 INDI

6 INDI

Comme indiqué précédemment, la consommation importante de ressources propre à Windows, l’utilisa-
tion des équipements Alpy et QHY via ce système pour la gestion des prises de données ne permet pas
une communication directe avec les appareils à travers des langages informatiques. Cela restreint consi-
dérablement les possibilités de personnalisation et d’automatisation, notamment pour des opérations
telles que : La question de l’utilisation d’une application soulève plusieurs limites. D’abord, en termes
de praticité, le fait de ne pas pouvoir interagir directement avec un code empêche les modifications
ainsi que le contrôle à distance. Ensuite, concernant la possibilité, une application ne fournit pas
nécessairement les métadonnées indispensables relatives aux différentes prises de données. Enfin, sur
le plan de la disponibilité, elle ne permet pas le contrôle à distance et complique toute intervention
en cas de défaillance.

Afin de pallier à cela, il y a INDI qui est un protocole open source et une bibliothèque logicielle conçus
pour permettre à des logiciels de contrôler une grande variété d’équipements astronomiques. Dans ces
équipements figurent les modèles d’Alpy et QHY utilisés pour le projet. Il a donc été repris les codes
de GitHub de INDI qui permettent de communiquer avec ces équipements afin de les personnaliser au
besoin souhaité pour le projet.

6.1 Fonctionnement

INDI repose sur une architecture client-serveur, le serveur INDI (indiserver) gère la communication
entre les pilotes matériels (drivers) et les logiciels clients. Dans le cadre du projet, le client utilisé est
libindi, qui est la bibliothèque cliente officielle du protocole INDI en C++ afin de pouvoir se connecter
à indiserver, interagir avec les périphériques et envoyer/recevoir des propriétés INDI sous forme XML
(eXtensible Markup Language 6) via des objets C++.

Afin d’avoir un meilleur aperçu des différents rôles de chaque élément, une représentation structurée
des différents rôles des éléments mentionnés est présentée dans le tableau 1.

Table 1 – Rôles des composants dans l’architecture INDI

Élément Rôle
indiserver Serveur central INDI
QHY, Alpy Périphériques gérés par pilotes INDI
Code C++ Client INDI via libindi

Ci-dessous les figures 6 et 7 présentent respectivement les commandes indiserver et indi_getprop dont
les fonctions sont, d’une part, de lancer le serveur INDI avec le chargement d’un pilote spécifique (ici
celui de la caméra QHYCCD (Charged-Coupled Device) 7), et d’autre part, d’interroger un serveur
INDI afin d’obtenir la valeur des propriétés exposées par les appareils connectés.

Sur la figure 6 est visualisable que le serveur INDI démarre et ouvre le port 7624 pour permettre
aux clients INDI de se connecter et crée également un socket local Unix pour les connexions internes.
Le pilote est lancé dans un processus enfant qui a pour PID (Process IDentifier) 39698. Par la suite,
plusieurs drivers sont affichés, où chaque driver INDI assure un rôle spécifique à un matériel donné et
expose les fonctions que ce matériel est capable de réaliser, un exemple est démontré sur le tableau 2,
la ligne Client 9 : new arrival from 127.0.0.1 :56850 - welcome ! indique qu’un nouveau client vient
de se connecter au serveur INDI en connexion locale (l’équipement QHYCCD dans ce cas), Client 9 :

6. Pour le cas du projet cela représente les propriétés exposées par les périphériques (température, temps de mesure,
connexion. . .).

7. Type de capteur utilisé pour capturer des images, très courant en astrophotographie, microscopie, caméras scien-
tifiques, etc.

14

6 INDI

read EOF (End Of File) signifie par la suite que le client a fermé la connexion, enfin Client 9 : shut
down complete - bye ! le serveur termine proprement la session avec ce client.

Table 2 – Correspondance entre les types de demande et les propriétés INDI

Type de demande Propriété INDI exposée par le driver
Définir une durée de pose CCD_EXPOSURE
Lire la température du capteur CCD_TEMPERATURE
Régler le gain CCD_GAIN
Sélectionner une région ROI (Region of Interest) CCD_FRAME
Déclencher une capture CCD_CAPTURE ou CCD_EXPOSURE
Recevoir une image CCD1 (type BLOB – données image brutes binaire)

Figure 6 – Résultat commande indiserver

Figure 7 – Résultat commande indi_getprop

Sur la figure 7 sont démontrées toutes les
propriétés exposées par la caméra QHY
CCD 16200A-M-0047e4, sur les deux pre-
mières lignes il est possible de voir que
la caméra n’est pas actuellement connec-
tée (CONNECT=Off), il est possible de
constater le nom commercial du pilote (DRI-
VER_NAME), le nom du fichier exécutable
du driver (DRIVER_EXEC), la version du
pilote (DRIVER_VERSION) etc... Tous ces
paramètres exposés par le pilote INDI sont
entièrement accessibles et configurables de-
puis le code C++, grâce à l’API de libindi
utilisée.

15

7 Partie 1 : De l’éxécution du code jusqu’au moment d’avant l’envoie

7 Partie 1 : De l’éxécution du code jusqu’au moment d’avant l’envoie

Dans cette première partie qui représente la partie 1 représentée sur la figure 5, il est expliqué le
fonctionnement du code d’interopérabilité de son exécution jusqu’à avant l’envoi des données, excepté
la partie 2 (cryptographie (chiffrement)) qui sera expliquée dans la partie suivante 8. Il est dans un
premier temps expliqué le diagramme général de la partie 1 dans la section 7.1 puis par la suite chaque
partie du diagramme de a à f sera expliquée et détaillée plus en détail.

7.1 Diagramme général et explication

Le diagramme général de la partie 1 est représenté sur la figure 8, où les différents scripts représentés
sont exécutés, les scripts ont été codés en langages C et bash dans le but d’avoir une rapidité d’exécution
des codes la plus rapide possible. Cela peut être possible grâce au langage de bas niveau qui est C, et
bash avec sa syntaxe étendue qui rend le codage plus simple.

Figure 8 – Diagramme Partie 1

Le code commence par le script
main.c, c’est à partir de ce
script qu’est vérifié si des fichiers
sont présents dans les répertoires
où sont déposés les fichiers des
équipements Alpy, QHY, Nikon,
TESS-W et TESS-W4. Il est à no-
ter que seul un dossier TESS-W
est présent sur le diagramme, c’est
parce que les fichiers de TESS-W
et TESS-W4 sont envoyés dans le
même répertoire.

Quand un fichier doit être traité,
le code qui correspond au ré-
pertoire est donc exécuté, par
exemple, si un fichier est présent
dans le répertoire d’ Alpy, alors le
script alpy.sh sera exécuté, les va-
riables ont les valeurs spécifiques
pour un fichier Alpy attribué, puis
la fonction Execution est appe-
lée, cette fonction contient tout
le traitement jusqu’à la fin, c’est-
à-dire qu’elle s’occupe du traite-
ment des données, de l’envoi, et
de leur suppression sur la sta-
tion une fois les données envoyées.
Suite à cela, est appelée la fonc-
tion MakeTram, c’est dans cette
partie du code où sont ajoutées les
métadonnées pour être envoyées
dans le fichier info qui est visua-
lisable sur le diagramme. La fonc-
tion Log_NAS qui suit fournit les
informations de connexion pour se

connecter au compte INDICATIC sur le NAS avec le chemin auquel doivent être envoyés les fichiers,

16

7 Partie 1 : De l’éxécution du code jusqu’au moment d’avant l’envoie

l’avant-dernière fonction Connect_To_NAS appelle la fonction CheckSumGenerate, puis gère plusieurs
vérifications auprès du NAS comme les doublons et gère le cas s’ils sont présents, puis envoie les fichiers
vers le NAS. Quant à elle, la fonction CheckSumGenerate génère les empreintes numériques pour les
fichiers Payload et info puis exécute le script principal chargé de réaliser le chiffrement.

7.2 Exécution de main.c et traitement des données de chaque équipement (a)

Figure 9 – Diagramme partie a

Sur la figure 9 est représentée la partie a du schéma de la
partie 1. Sur ce schéma, il est possible de voir en détail
comment les fichiers des différents appareils de mesures,
Alpy, QHY, Nikon, TESS-W et TESS-W4 sont traités afin
de déterminer si au moins un fichier est présent dans leur
répertoire respectif. Une fois que le script main.c est exé-
cuté, le code entre donc dans une boucle infinie, à chaque
2 secondes d’intervalle le code vérifie si au moins un fi-
chier est détecté dans un répertoire puis passe au suivant,
si plusieurs fichiers sont présents alors le fichier le plus an-
cien est sélectionné et le script respectif associé au dossier
du fichier est exécuté.

Figure 10 – Déroulement du script alpy.sh

La figure 10 montre le déroulement du script alpy.sh, sa-
chant que les quatre fichiers .sh du diagramme de gauche
ont le même déroulement, seulement l’explication de alpy
peut être faite, une fois que le fichier alpy.sh est exécuté,
les variables directory, imageInfo, File, Station et index
vont respectivement avoir les valeurs suivantes attribuées :
le chemin vers le dossier où se situe le fichier Payload, le
chemin vers le répertoire où sera le fichier info associé
au fichier Payload, la variable qui contient le Payload, le
chemin de la station dans le NAS vers lequel les fichiers
doivent être envoyés, la valeur qui correspond au dossier
Alpy.

Afin de pouvoir avoir un aperçu visuel du code et ainsi
avoir une meilleure compréhension, la figure 11 montre
comment les variables citées qui sont visibles sur la figure
10 ont leurs valeurs attribuées. Puis, pour terminer cette
partie a, la fonction execution est exécutée par la suite.

17

7 Partie 1 : De l’éxécution du code jusqu’au moment d’avant l’envoie

Figure 11 – Extrait du script alpy.sh concernant la figure 10

7.3 Fonction execution, Séquenceur (b)

Figure 12 – Diagramme Partie b

La figure 12 représente la partie b du diagramme de la partie 1,
en haut du diagramme est visualisable l’exécution de la fonction
execution qui est représentée sur la figure 10, voici l’explication en
détail de ce que fait donc cette fonction :

Premièrement, il est déterminé si le dossier imageInfo existe sur
la station là où il devrait être. Si le fichier n’existe pas, alors il
est créé et rejoint l’étape du cas s’il existait déjà. À partir de là,
la fonction Maketram est exécutée et le nom du fichier info est
attribué de la manière suivante :

newFileName="info_${FileName%.*}.txt"

la variable FileName est le chemin du Payload, donc avec l’option
%.* Il est possible de supprimer l’expansion du Payload, il est
ajouté info_ avant le Payload et est également ajouté .txt à la fin
et la variable newFileName contient maintenant le nom du fichier
info associé à celui du Payload.

Afin que ce fichier info puisse avoir un chemin identifiable par
la station pour pouvoir l’utiliser, la ligne de code ci-dessous lui
attribue ainsi un chemin :

FileInfo="$imageInfo/$newFileName"

Comme il était démontré sur la figure 11, un chemin est affilié à la
variable imageInfo qui pointe vers le répertoire /home/indicatic-
e1/Desktop/code/infoIMG, à celui-ci est ajouté la variable newFi-
leName qui contient donc le nom du fichier info, puis afin d’en-
voyer les données dans ce fichier info, la ligne :

echo "$TrameToSend" > "$FileInfo"

permet d’insérer les métadonnées contenues dans la variable Tra-
meToSend directement dans le fichier info.

Un exemple concret des fichiers Payload et info reçus est repré-
senté sur la figure 13 avec des résultats directement pris du NAS
concernant des fichiers de l’équipement QHY.

18

7 Partie 1 : De l’éxécution du code jusqu’au moment d’avant l’envoie

Figure 13 – Exemple nommage fichier info

Il est donc possible de voir que le nom du premier fichier
est :
Tue_May_27_15_30_27_2025_10000000us_CFW5.fits
et donc pour définir le nom du fichier info, info_ a été
ajouté au début du nom et .fits a été remplacé par .txt.
Suite à cela, les fonctions Log_NAS et Connect_To_NAS
sont exécutées avant que les fichiers traités soient défini-
tivement supprimés de la station.

7.4 Fonction Maketram, organisation des métadonnées (c)

Figure 14 – Script de la fonction Maketram

Le script de la fonction Maketram est représenté sur la figure 14, le chemin du fichier Payload qui est
FilePath permet ainsi de récupérer plusieurs métadonnées et de les attribuer à différentes variables
afin que celles-ci soient concaténées à la variable TrameToSend afin d’être envoyées comme expliqué
plus haut dans la partie 7.3.

7.5 Fonction Log_NAS, information de connexion (d)

Figure 15 – Script de la fonction
Log_NAS

Le script de la fonction Log_NAS représenté sur la figure 15
permet d’avoir un aperçu global du traitement qui gère la desti-
nation vers le NAS de chaque appareil.

Premièrement, les informations de connexion nécessaires concer-
nant le NAS tel que le nom de domaine "HOST", l’utilisateur
ou les données vont être envoyées "USER", ainsi que le mot de
passe "PASSWD" sont définies ici, et seront utilisées plus tard
lors de l’envoi des données. Plus bas, est déterminé le chemin de
destination dans le NAS de chaque appareil, la variable Station
qui a sa valeur attribuée visualisable sur la figure 11 indique le
chemin spécifique dans le NAS où doivent être envoyées les don-
nées (visualisables sur la figure 15), puis le chemin est complété
avec le répertoire final de l’appareil qui est le même pour chaque
station différente. Enfin, afin que cela soit le chemin de Alpy pour
citer cet exemple, la valeur de la variable index détermine ainsi
la valeur de la variable REMOTE_DIR, soit le chemin d’envoi.

19

7 Partie 1 : De l’éxécution du code jusqu’au moment d’avant l’envoie

7.6 Fonction Connect_To_NAS, transfert des données vers le NAS (e)

Cette fonction permet d’envoyer les données, soit les fichiers Payload, info et CryptFile.txt vers le
NAS, également, une connexion au NAS est effectuée afin de detérminer si le NAS possède déjà des
fichiers du même nom dans le répertoire d’envoi, la station traite donc de différentes manières l’envoi
des données suivant le résultat. Enfin, une fois l’envoi effectué du côté de la station, celle-ci vérifie dans
le NAS afin de confirmer si tous les fichiers envoyés ont bien été reçus.

Figure 16 – Diagramme Partie e

La figure 16 représente la partie e du diagramme
de la partie 1, c’est cette partie-là qui gère l’envoi
des données vers le NAS ainsi que la vérification
des doublons et de la réception complète des fi-
chiers dans le NAS.

Premièrement, le script va exécuter la fonction
CheckSumGenerate, cette fonction est celle qui
sert à générer les empreintes numériques des fi-
chiers Payload et info. Par la suite, une connexion
SSH est établie vers le NAS pour rechercher si des
fichiers présents dans le répertoire d’envoi ont le
même nom que ceux à envoyer, si des fichiers ont
le même nom, alors la valeur 5 est écrite dans le
fichier count.txt présent dans le NAS ainsi qu’un
chiffre qui correspond au numéro attribué pour le
renommage, sinon c’est la valeur 1 qui est écrite
pour signifier qu’aucun fichier ne possède le même
nom, puis, cette valeur sera écrite dans le fichier
count.txt de la station grâce à la commande :

sshpass -p "$PASSWD" scp "$USER@$HOST

suite à cela, avant l’envoi des fichiers, si la valeur
est 5, alors les fichiers sont renommés en ajoutant
le chiffre écrit dans le fichier count.txt entre paren-
thèses (-1 par défaut, ce chiffre a la valeur +1 par
rapport au même nom des fichiers déjà traités) au
début du nom des trois fichiers afin d’éviter que
l’envoi des fichiers avec le même nom écrase les
fichiers déjà présents dans le NAS.

À partir de là, les fichiers sont transférés vers le
NAS via le protocole SFTP. Le choix de ce proto-
cole est expliqué dans la partie 3. Une fois l’envoi
des fichiers terminé, la station se connecte de nou-
veau en SSH afin de voir si les fichiers ont tous été
reçus dans le NAS par rapport à la valeur écrite
dans la variable count pour savoir quel fichier on
recherche. Enfin, si tous les fichiers ont été reçus,
alors la station passe à la suite du code ou alors,
si un des fichiers manque, les fichiers qui corres-
pondent sont supprimés du NAS.

20

7 Partie 1 : De l’éxécution du code jusqu’au moment d’avant l’envoie

Afin de mieux expliquer comment fonctionne l’organisation du fichier count.txt, le schéma pour le cas
avec les valeurs 1 et -1 (cas dans lequel aucun fichier existant dans le répertoire d’envoi du NAS n’a
le même nom que les fichiers à envoyer) représenté sur la figure 17 explique plus en détail comment
les valeurs sont insérées dans le fichier. La station réalise une connexion SSH et recherche des fichiers
qui ont le même nom dans le répertoire de destination que les fichiers à envoyer, les valeurs sont donc
insérées dans le fichier côté NAS puis avec la commande scp la station copie le fichier count.txt dans son
environnement et attribue les deux valeurs du fichier dans des variables afin de procéder au traitement.

Figure 17 – Organisation fichier count.txt, cas aucun fichier existant

Sur la figure 18, un cas avec un fichier dans le NAS qui possède déjà le même nom que le fichier qui
doit être envoyé est représenté. Donc, la première valeur est 5 pour signifier qu’un fichier est déjà
existant, et le chiffre 1 est le chiffre incrémenté qui signifie que seulement 1 fichier du même nom est
déjà présent, ce qui pourrait donner un exemple de nom pour les fichiers comme : (1)nom du fichier.

Figure 18 – Organisation fichier count.txt, cas fichier existant

21

7 Partie 1 : De l’éxécution du code jusqu’au moment d’avant l’envoie

7.7 Fonction ChecksumGenerate, réalisation des empreintes numériques (f)

Figure 19 – ChecksumGenerate fonction

La fonction ChecksumGenerate qui a pour objectif de générer les empreintes numériques des fichiers
Payload et info est visualisable sur la figure 19, l’empreinte numérique du fichier Payload est générée
avec la ligne du script suivante :

checksumPayload=$(sha256sum "$LOCAL_FILE" | awk '{print $1}')

puis la ligne :

checksumInfo=$(sha256sum "$FileInfo" | awk '{print $1}')

permet de générer l’empreinte numérique du fichier info. Suite à cela, il est donné à la variable Check-
sumToCrypt le chemin vers le fichier StringCrypt.txt dans lequel sont insérées les empreintes numériques
grâce à la ligne :

ChecksumToCrypt="$imageInfo"/"StringCrypt.txt"

les empreintes sont ensuite écrites dans le fichier qui est pointé par la variable ChecksumToCrypt avec
la ligne :

echo "$checksumPayload $checksumInfo" > "$ChecksumToCrypt"

enfin, la partie cryptographique est exécutée pour procéder au chiffrement des deux empreintes numé-
riques générées :

EXECUTABLE="/home/indicatic-e1/Desktop/code/CryptageC/mainCrypt"
$EXECUTABLE

22

Esta parte ha sido extraída por razones de propiedad intelectual.

This part has been removed for proprietary reasons.

Contenu omis pour des raisons de confidentialité.

9 Partie 3 : Transfert des données

9 Partie 3 : Transfert des données

Cette partie 3 se concentre sur le transfert des données, le protocole utilisé, l’explication de son choix
ainsi que ses avantages. Une vue d’ensemble est représentée sur la figure 27.

Figure 27 – Vue d’ensemble du transfert des données

9.1 Raisons ayant conduit à l’adoption du protocole SFTP

Plusieurs facteurs devaient être pris en considération pour l’adoption du protocole :

• Sécurité

• Portabilité

• Intégrité

• Rapidité

En effet, SFTP utilise le chiffrement fourni par SSH pour sécuriser les données en transit, ce qui lui
permet de sécuriser à la fois les données, les commandes et les identifiants pendant le transfert. Les
différentes commandes utilisées pour le transfert sont : cd et put pour respectivement se déplacer dans
le répertoire de dépôt des fichiers du NAS, et l’envoi des fichiers.

Grâce à sa portabilité, SFTP peut être utilisé sur n’importe quelle plateforme qui supporte SSH, y
compris Windows, Linux, et macOS.

SFTP utilise des algorithmes de hachage tel que SHA-2 pour vérifier que les fichiers n’ont pas été
modifiés pendant le transfert, garantissant ainsi leur intégrité.

Figure 28 – Script de l’envoie des fichiers

La figure 28 montre la manière dont les fichiers sont
envoyés. La CLI (Command Line Interface) lftp
permet ainsi de se connecter au NAS et d’envoyer
les fichiers dans l’ordre suivant : Payload, Info et
CryptF ile.txt.

Également, un autre moyen pour transférer les fi-
chiers pourrait être avec curl, mais avec les tests
ci-dessous, il est démontré pourquoi lftp a été fa-
vorisé en comparant les protocoles SFTP et FTPS
(File Transfer Protocol Secure).

28

9 Partie 3 : Transfert des données

9.1.1 Benchmarking Download et Upload SFTP/FTPS

Figure 29 – Comparaison vitesse de transferts des CLI lftp
et curl, capture d’écran réalisée à partir du site [sftptogo.com],
consulté le [13 Mars 2025].

Afin d’avoir quelques points de compa-
raison entre les Téléchargements (Down-
load) et les Téléversements (Upload) des
deux protocoles différents, SFTP et FTPS
utilisant chacun d’eux les CLI lftp et
curl. Premièrement, il est à prendre en
compte que les commandes qui consti-
tuent le batch 8 (traitement par lots) re-
présentent environ 54, 5 MB de données à
transférer. Sur la figure 29, sont représen-
tés sur la partie du haut quatre différents
tests réalisés avec la CLI curl pour en-
voyer un total de 100 MB. En les compa-
rant à la partie du bas où les données sont
traitées avec la CLI lftp, il est largement
constataté que dans l’ensemble des cas
la CLI lftp permet de meilleures perfor-
mances, que ce soit dans le cas de down-
link que dans le cas d’uplink. Il est donc
clair sachant que les commandes néces-
saires sont manipulables par la CLI lftp
que le choix soit orienté vers celui-ci.

En ce qui concerne la sélection du pro-
tocole à sélectionner, les tests du gra-
phique du bas sont donc plus cohérents et
sont ainsi pris en considération. Dans les
quatre différents cas, le protocole SFTP
performe mieux. Il est important de no-
ter que plus de fichiers sont envoyés, plus
l’écart entre les deux protocoles est im-

portant alors que la quantité de données envoyées est égale, ce qui suggère que le nombre de batch
impacte plus le protocole FTPS (sûrement dû au certificat SSL/TLS (visualisable sur le tableau des
comparaisons) 4)) que le protocole SFTP , sachant que l’envoi des données de la station se réalise à
chaque fois que des données sont reçues, et que chaque équipement capture des données à un intervalle
de 30 secondes qui correspond à un rythme soutenu, alors le nombre de batch a un impact important
à prendre en considération.

Pour appuyer davantage cette tendance, la figure 30 représente l’envoi de différentes tailles de données
pour le même nombre de fichiers en utilisant la CLI lftp. Il est constaté que l’uplink, qui est la valeur
qui nous intéresse, a le temps le plus faible pour réaliser les envois.

Également, il y a le protocole FTP (File Transfer Protocol), qui permet une vitesse de transfert plus
rapide, mais celui-ci ne fournit pas de chiffrement. Cela signifie que toute personne interceptant le
trafic peut lire les données et potentiellement accéder au serveur, contrairement au protocole SFTP
qui permet de remédier au mieux à cela.

8. Désigne l’exécution automatique d’une série de commandes ou de tâches, sans intervention humaine pendant le
processus.

29

https://sftptogo.com/blog/sftp-vs-ftps-benchmarks/

9 Partie 3 : Transfert des données

Figure 30 – Envoie de différentes tailles, capture d’écran réalisée à partir du site [sftptogo.com], consulté le
[13 Mars 2025].

Table 4 – Comparaison entre les protocoles FTP, FTPS et SFTP

FTP FTPS SFTP
1. Force de la norme de cryptage des données ✗ ✓ ✓

2. Chiffrement des login/mdp ✗ ✓ ✓

3. Authentification par clé ✗ ✗ ✓

4. Certificat SSL/TLS ✗ ✓ ✗

5. Compatibilité avec les pare-feu ✗ ✗ ✓

Avec ceci dit, le protocole SFTP est actuellement celui utilisé afin d’assurer la meilleure rapidité tout
en assurant une intégrité et confidentialité des données. Cependant, avec le système d’élimination de
fichiers développé dans la partie 7.6 si la confidentialité n’était pas prise en compte, alors le protocole
FTP serait celui à privilégier.

9.2 Tailscale

Afin que la station puisse être capable d’envoyer les données vers le NAS, la création d’un réseau
privé virtuel (tailnet) a été réalisée avec Tailscale. Tailscale permet l’envoi de données entre un PC
(Personal Computer) et un NAS sur des réseaux différents grâce à sa technologie de VPN (Virtual
Private Network) maillé basée sur WireGuard. Ce qui permet de connecter tous les appareils à un
réseau privé sécurisé, peu importe leur emplacement physique ou leur réseau local. Chaque appareil
reçoit une adresse IP stable dans ce réseau virtuel (voir figure 31), ce qui permet une communication
directe. De plus, étant donné que les données transitent via des tunnels chiffrés WireGuard, cela assure
la sécurité et la confidentialité. Concernant la connexion directe peer-to-peer entre les appareils, C’est
un point très intéressant à prendre en compte pour le futur du projet quand les stations auront besoin
de communiquer directement entre elles.

À part cela, d’autres fonctionnalités peuvent être prises en considération pour le futur du projet :
— MagicDNS : Permet d’utiliser des noms de domaine lisibles (par exemple station1.tailnet)

au lieu d’adresses IP, ce qui simplifie la communication entre appareils.
— ACL (Access Control Lists) : Offre la possibilité de définir précisément quels appareils ou

utilisateurs ont accès à quels services, renforçant ainsi la sécurité du réseau.
— Subnet routers : Si le NAS se trouve sur un réseau local non compatible avec Tailscale (ce qui

n’est pas le cas pour le moment), il est possible d’utiliser un routeur Tailscale pour exposer ce
réseau au reste du tailnet.

30

https://sftptogo.com/blog/sftp-vs-ftps-benchmarks/

9 Partie 3 : Transfert des données

— Exit nodes : Permet de faire transiter l’intégralité du trafic Internet d’un appareil via un autre,
ce qui peut être utile pour centraliser les connexions ou contourner certaines restrictions réseau.

— Tailscale SSH : Fournit une méthode sécurisée pour se connecter en SSH à distance, sans
nécessiter la gestion manuelle des clés.

— Audit et journalisation : Propose des journaux de flux réseau et de configuration, utiles pour
assurer le suivi et la traçabilité des échanges entre stations.

Figure 31 – Interface de Tailscale, capture d’écran réalisée à partir du site [tailscale.com], consulté le [17
Mars 2025].

31

https://tailscale.com/

10 Partie 4 : Traitement des données lors de leur réception

10 Partie 4 : Traitement des données lors de leur réception

Dans cette quatrième partie, les données reçues par le NAS sont traitées, et leur organisation est
appliquée une fois leur intégrité vérifiée. Les parties a à d du diagramme 32 sont donc expliquées
indépendamment dans cette quatrième partie.

10.1 Diagramme général et explication

Figure 32 – Diagramme Partie 4

La partie a représente la recherche d’au moins un
fichier CryptFile.txt par le NAS dans chaque réper-
toire d’équipement utilisé pour chaque station, si un fi-
chier est détecté dans le répertoire qui peut être par
exemple : /var/services/homes/INDICATIC/Pacifico/IN-
DICATIC/UTP/ALPY pour le cas d’Alpy, alors le fichier
le plus ancien est sélectionné. À partir de là, il est écrit dans
un fichier indépendant pour chaque variable, les valeurs de
MPayload, MInfo, caesarV alue ET maskV alue (partie b).
La partie c, quant à elle, traite le déchiffrement à partir de
ces quatre fichiers qui contiennent les variables requises pour
procéder et obtenir l’empreinte numérique (appelée secret
dans la partie chiffrement (8)) de Payload et Info. Enfin, la
partie d va gérer l’organisation des fichiers dans le cas où
les empreintes numériques obtenues sont les mêmes ou pas
générées par le NAS.

10.2 Partie a : Recherche de fichier CryptFile
existant

Dans cette partie a le NAS recherche donc les fichiers Crypt-
File.txt, afin d’avoir une meilleure compréhension de cette
première étape de la partie 4, voici l’explication du dia-
gramme de la figure 33 :

Premièrement, le script main.sh permet l’exécution du code
d’interopérabilité côté NAS. La première fonctionnalité que
fait ce script est d’exécuter le script OrderImages.sh qui
permet l’organisation des fichiers une fois leur intégrité vé-
rifiée. Afin de déterminer si un fichier CryptF ile.txt est
présent, le code va commencer à rechercher dans chaque
répertoire de la station caribe puis, une fois chaque réper-
toire d’une station vérifié, il est procédé à la même mé-
thode dans autant de répertoires différents que le NAS
contient. Quand un fichier CryptF ile.txt est détecté, le fi-
chier fileTreament.sh est exécuté avec comme argument
le répertoire où se trouve le fichier, la ligne de code ci-bas
permet ceci :

32

10 Partie 4 : Traitement des données lors de leur réception

directory="/var/services/homes/INDICATIC/"$dir"/ALPY"
/var/services/homes/INDICATIC/InteroperabilityCode/fileTreatment.sh "$directory"

Une fois le script fileTreament.sh exécuté avec l’argument, le premier traitement réalisé est de détecter
le fichier CryptF ile.txt le plus ancien et donc de repérer les fichiers Payload et Info associés.

Figure 33 – Diagramme Partie a

Le code ci-dessous permet ainsi cela.

FindFiles=$(find . \(-type f \) -name
"*CryptFile*")↪→

name=$(ls -lt $FindFiles | tail -n 1 |
awk '{print $NF}')$↪→

Le nom du fichier sélectioné est ainsi associé
à la variable, FindFiles et la variable name
sélectionne le fichier le plus ancien. Par la suite
les deux lignes de code suivante :

FileName=$(echo "$name" | awk
'{sub(".txt$", "", $0); print $0}')↪→

FileName=$(echo "$FileName" | awk -F
'_' '{print substr($0, index($0,
"_") + 1)}')

↪→

↪→

permettent de seulement contenir le nom du fi-
chier dans la variable FileName, par exemple
si le fichier a pour nom CryptFile_wed123.txt
alors la variable FileName contiendra seule-
ment wed123, c’est avec ce nom que le NAS
peut associer les fichiers Payload et info cor-
respondants au bon fichier CryptFile.txt.

10.3 Partie b : Récupération des va-
leurs du fichier CryptFile.txt

Cette partie traite donc une étape cruciale afin
que le code de déchiffrement puisse avoir accès
aux données du fichier CryptFile.txt, comme il
est possible de le voir dans les lignes de code
ci-dessous. La variable name qui contient le
nom du fichier CryptFile mentionné plus haut
dans la sous-section 10.2 est utilisée afin d’écrire
MPayload, MInfo caesarV alue et maskV alue
dans un fichier respectif pour chacun.

33

10 Partie 4 : Traitement des données lors de leur réception

cat "$name" | tr '\n' ' ' | awk '{print $1}' >
/var/services/homes/INDICATIC/InteroperabilityCode/tmpFile/BitPayloadToSend.txt↪→

cat "$name" | tr '\n' ' ' | awk '{print $2}' >
/var/services/homes/INDICATIC/InteroperabilityCode/tmpFile/BitInfoToSend.txt↪→

cat "$name" | tr '\n' ' ' | awk '{print $3}' >
/var/services/homes/INDICATIC/InteroperabilityCode/tmpFile/Caesar.txt↪→

cat "$name" | tr '\n' ' ' | awk '{print $4}' >
/var/services/homes/INDICATIC/InteroperabilityCode/tmpFile/Mask.txt↪→

10.4 Partie c : Réalisation du déchiffrement

La ligne de code :

/var/services/homes/INDICATIC/InteroperabilityCode/mainTreatment

permet d’exécuter le code principal de déchiffrement, une fois que le déchiffrement est terminé, les
empreintes numériques de Payload et Info sont écrites dans le fichier HashFile.txt puis sont récupérées
dans la suite du traitement des données :

HashFile="/var/services/homes/INDICATIC/InteroperabilityCode/Hash.txt"

Enfin, les valeurs des empreintes numériques sont attribuées aux variables PayloadHash et InfoHash,
ces variables seront comparées avec les empreintes numériques générées par le NAS sur les fichiers
Payload et Info exactement de la même manière que la station, soit avec sha256.

read -r PayloadHash < "$HashFile"
read -r InfoHash < <(tail -n +2 "$HashFile"

10.5 Partie d : Organisations des fichiers

Cette dernière partie du traitement des fichiers concerne l’organisation une fois les empreintes numé-
riques générées avec sha256 et obtenues avec le déchiffrement sont comparées voir figure 34. Dans le
cas où les empreintes numériques sont les mêmes, alors seulement le fichier CryptFile.txt est supprimé
et les fichiers Payload et Info sont transférés dans un dossier créé et nommé par le même nom que la
variable name. Dans le cas où les empreintes ne sont pas identiques, alors les 3 fichiers transférés sont
supprimés.

Concernant le script OrderImages.sh, celui-ci vérifie périodiquement la présence des dossiers créés dans
chaque répertoire. S’il en trouve un, alors étant donné que ce dossier contient les deux fichiers avec
l’intégrité vérifiée, alors ils sont transférés dans le dossier où tous les fichiers vérifiés se trouvent et le
dossier créé spécialement pour les deux fichiers est supprimé.

Figure 34 – Vérifications des empreintes numériques

34

11 Partie 5 : Déchiffrement des empreintes numériques

11 Partie 5 : Déchiffrement des empreintes numériques

Dans cette partie 5 sont expliquées les trois différentes étapes de déchiffrement réalisées par le NAS
à partir des informations du fichier CryptFile.txt reçues afin de déterminer les empreintes numériques
des fichiers Payload et Info. Il est d’abord expliqué le diagramme général de la partie, puis les trois
différentes étapes réalisées.

11.1 Diagramme général et explication

Figure 35 – Dia-
gramme Partie 5

Sur la figure 35 sont représentées les trois étapes de déchiffrement nécessaires
pour retrouver les empreintes numériques de Payload et Info. La première étape
consiste à appliquer l’opération inverse du XOR avec la valeur de la variable
maskV alue du fichier reçu CryptFile.txt, ainsi que de réaliser la conversion
du résultat obtenu de binaire à décimal. La seconde étape consiste à réaliser
l’inverse du chiffrement de César avec la valeur de caesarV alue obtenue. La
dernière étape consiste en l’utilisation de l’interpolation lagrangienne afin de
retrouver la valeur des empreintes numériques.

11.2 Première étape : Opération inverse du XOR

Cette première étape consiste simplement à réaliser l’opération inverse du XOR
sur la matrice M (M peut représenter soit MPayload soit MInfo), la réalisation
inverse du XOR consiste à réaliser de nouveau exactement la même démarche
que la troisième étape (8.4) de la partie chiffrement, en reprenant le résultat
obtenu et en appliquant le masque binaire, le vecteur numérique obtenu est
011101001000001110001001 puis est ensuite converti en décimal.

11.3 Deuxième étape : Opération inverse de César

Pour rappel, dans la partie chiffrement, l’opération de César est réalisée de la
manière suivante :

int index = tabShamir[i][j] + caesarValue;
int validIndex = index % limit;
tab[i][j] = validIndex;

Donc, afin de retrouver la valeur décimale avant l’application de César, l’opéra-
tion suivante est utilisée :

tabShamir[i][j] = ((tab[i][j] - caesarValue + limit) % limit);

En repartant du résultat obtenu après l’opération inverse du XOR qui est 116
| 131 | 137, le résultat obtenu est 175 | 190 | 196.

35

11 Partie 5 : Déchiffrement des empreintes numériques

11.4 Troisième étape : Interpolation lagrangienne

Dans cette troisième étape, pour reconstruire le secret, il est utilisé la formule d’interpolation de
Lagrange, qui permet de retrouver la valeur du polynôme en zéro (i.e. le terme constant, donc le
secret) à partir de t points (xi, yi) :

f(0) =
t∑

i=1

yi · ℓi(0) (7)

Où chaque coefficient de Lagrange ℓi(0) est défini par :

ℓi(0) =
t∏

j=1
j ̸=i

0− xj
xi − xj

(8)

Cette expression calcule le poids de chaque fragment dans la reconstruction du polynôme à zéro, en
excluant les autres indices pour chaque i.

Afin de démontrer un exemple, il est utilisé un partage de secret de Shamir avec n = 8 fragments et un
seuil t = n

4 = 2. Le secret à partager est S = 123, qui est encodé dans le terme constant du polynôme :

f(x) = a0 + a1x = 123 + 45x (9)

Sont générés les fragments en évaluant ce polynôme pour x = 1 à x = 8, ce qui donne les points
suivants :

(1, 168), (2, 213), (3, 258), (4, 303),

(5, 348), (6, 393), (7, 438), (8, 483)
(10)

Pour reconstruire le secret, il est choisi deux points au hasard parmi ceux disponibles, par exemple :

(x1, y1) = (2, 213), (x2, y2) = (5, 348) (11)

Il est utilisé l’interpolation de Lagrange pour calculer f(0), ce qui correspond au secret :

f(0) = y1 ·
0− x2
x1 − x2

+ y2 ·
0− x1
x2 − x1

(12)

Calculs :

f(0) = 213 · −5

2− 5
+ 348 · −2

5− 2

= 213 · −5

−3
+ 348 · −2

3

= 213 · 5
3
+ 348 ·

(
−2

3

)
=

1065

3
− 696

3

=
369

3
= 123

(13)

Donc, le secret reconstitué est :

123

Afin d’avoir un aperçu visuel, la procédure complète du déchiffrement est représentée sur la figure 36.

36

11 Partie 5 : Déchiffrement des empreintes numériques

Figure 36 – Traitement des données déchifrement

Le résultat obtenu est ainsi l’empreinte numérique de Payload et Info qui sont ensuite comparées avec
les empreintes numériques générées par le NAS (expliqué dans la partie 10.5).

37

12 Partie 6 : Interface, lancement et contrôle de la station

12 Partie 6 : Interface, lancement et contrôle de la station

Cette dernière portion du code d’interopérabilité prend en charge l’automatisation intégrale de la
station, en assurant son fonctionnement de façon autonome. Différents paramètres, détaillés ci-dessous,
sont contrôlés afin de garantir la connectivité des appareils reliés à la station durant l’exécution des
cycles automatisés. Une logique spécifique a également été mise en place pour permettre la répétition
programmée de ces cycles à des horaires prédéfinis. Par la suite est démontré le contrôle de la station
en cas de différents scénarios possibles tels que, coupure d’internet, mémoire de la station proche de la
saturation.

12.1 Interface et lancement

Figure 37 – Dia-
gramme Partie 6

— Vérification des drivers : La première vérification effectuée est la vérifi-
cation des drivers, avec la commande :

lsusb > /tmp/drivers.txt
drivs=$(cat /tmp/drivers.txt)

il est possible de savoir les équipements qui sont bien connectés à la station
avec le contenu de la variable drivs, pour chaque équipements manquant un
email d’avertissement est envoyé.

— Vérification INDI server : La vérification de INDI server permet de
détecter si le serveur INDI est déjà exécuté ou non, dans le cas échéant,
alors celui-ci est lancé et la présence de détection des équipements est vérifiée
(voir figure 6) et confirmée, dans le cas contraire un email d’avertissement
est envoyé.

— Vérification des équipements connectés à INDI : Suite aux vérifica-
tions du serveur, il est vérifié la présence des propriétés des équipements
(voir figure 7), si aucune propriété pour un équipement n’est détectée, alors
un email d’avertissement est envoyé.

— Ajout et vérification Crontab 9 : Afin d’automatiser la station, toutes
les différentes tâches sont planifiées dans Crontab où Cron est le démon
(service) qui va se charger d’exécuter les planifications. Ainsi, cette auto-
matisation des tâches est organisée en deux parties : la partie de l’exécution
des tâches, et la partie de l’arrêt des tâches comme il est démontré sur la
figure 38. Sur cette figure, il est visualisable que chaque ligne commence par
des variables de couleur blanche, ces variables ont pour valeurs le début et
la fin d’un cycle ou Begin signifie un début de cycle et Kill signifie la fin
de cycle. Les lignes de code ci-dessous montrent comment sont attribuées
les valeurs pour définir le temps du cycle :

#Default time to begin a cycle
BegingDefaultAllHour="14"
BegingDefaultAllMinute="35"

#Default time to terminate a cycle
EndDefaultAllHour="16"
EndDefaultAllMinute="0"

9. Crontab est un outil qui permet de lancer des tâches de façon régulière sur les systèmes Linux.

38

12 Partie 6 : Interface, lancement et contrôle de la station

Puis, par la suite ces valeurs sont attribuées de la manière suivante :

BegingCodeAlpyHour="$BegingDefaultAllHour"
BegingCodeAlpyMinute="$BegingDefaultAllMinute"
KillCodeAlpyHour="$EndDefaultAllHour"
KillCodeAlpyMinute="$EndDefaultAllMinute"

Figure 38 – Organisation des tâches dans Crontab

12.2 Contrôle de la station

À ce jour, plusieurs scénarios d’urgence potentiels ont été anticipés, tels qu’une éventuelle coupure
d’accès à Internet ou un remplissage excessif de la mémoire. Voici comment ils sont traités.

— Cas coupure d’accès à Internet : En cas de perte de connexion Internet sur la station, les
programmes assurant la communication avec les équipements ainsi que le module d’interopéra-
bilité sont automatiquement arrêtés. Quand la connexion Internet est de nouveau disponible, il
y a deux différentes options pour reprendre :

• Option 1 : La connexion est de nouveau disponible et le cycle n’est toujours pas ter-
miné, alors le code d’interopérabilité se remet à fonctionner pour transmettre les données
et demander des données aux équipements.

• Option 2 : La connexion est de nouveau disponible mais le cycle est terminé, alors le code
d’interopérabilité va juste envoyer les données acquises avant la coupure de connexion.

— Mémoire remplie : En cas d’un seuil prédéterminé atteint, alors les programmes assurant la
communication avec les équipements ainsi que le module d’interopérabilité sont automatiquement
arrêtés. Quand l’autre seuil qui détermine le moment à partir duquel reprendre à la normale, il
y a deux différentes options pour reprendre :

• Option 1 : Le seuil minimal est atteint et le cycle n’est pas terminé, alors la station demande
de nouveau des données aux équipements.

• Option 2 : Le seuil minimal est atteint mais le cycle est terminé, alors seulement l’envoi
des données restantes est envoyé.

De plus, même une fois le cycle terminé, le code continue d’envoyer les données tant qu’il en reste, et
ne s’interrompt que lorsque toutes les données ont été transmises.

39

13 Transfert de savoir

13 Transfert de savoir

GitHub est utilisé afin d’effectuer le transfert de savoir de ce qui a été fait pendant cette période de
stage. En effet, GitHub permet de manière simple l’envoi de code et la réception de ceci avec des
modifications apportées.

Figure 39 – Organisation GitHub

La figure 39 illustre la structure du dépôt Gi-
tHub et la répartition des fichiers transférés :

— ASTRODEVICES : Les dossiers AL-
PYFILE, NIKONFILE, QHYCCDFILE,
TESSFILE, TESS-W et TESS-W4 pré-
sents dans le dossier texteASTRODE-
VICES représentent les répertoires de
chaque équipement où sont transférées les
données capturées en attente pour leur en-
voi vers le NAS.

— AuToRun : Contient les scripts utilisés
pour le fonctionnement de la partie 6.

— INDIcode : Contient les scripts utilisés
pour communiquer avec le serveur INDI,
expliqué dans la section 6.

— NAScode : Contient les scripts utilisés
pour l’organisation des fichiers reçus par
le NAS, ainsi que ceux dédiés au déchif-
frement, respectivement présentés dans les
parties 4 et 5.

— code : Contient les deux dossiers Crypta-
geC et Interop_code, qui contienent res-
pectivement la partie chiffrements de Pay-
load et Info (section 8) et ainsi que l’orga-
nisation et le traitement des fichiers dans
la station (section 7.1).

Il est à noter qu’il est présent dans les dossiers
AuToRun, INDIcode, NAScode, CryptageC et
Interop_code, un fichier Readme.md. Dans ces
fichiers se trouve l’explication de chaque script
ainsi que les paquets à installer pour le bon fonc-
tionnement de chacun. Afin d’avoir un aperçu
visuel, une capture d’écran du dépôt GitHub est

visualisable sur la figure 40

Figure 40 – Capture d’écran du dépôt GitHub

40

14 Diagramme de Gantt et KPI (Key Performance Indicator)

14 Diagramme de Gantt et KPI (Key Performance Indicator)

Cette section du rapport est consacrée à l’organisation des différentes tâches accomplies au cours de la
période de stage. Une explication détaillée du diagramme de Gantt est fournie. De plus, les indicateurs
de performance, illustrés par un schéma de répartition temporelle et une représentation barométrique
du taux de réussite, offrent une vue d’ensemble complète du code développé. Ces éléments permettent
de mettre en lumière les points clés du projet, et ainsi d’aboutir à une conclusion pertinente sur sa
gestion globale.

14.1 Explication du diagramme de gantt et point de vue sur l’organisation du
temps

Le diagramme de Gantt représenté sur la figure 42 permet de voir le temps passé sur chaque tâche
des six différentes parties ainsi que le temps fallu pour réaliser la rédaction de ce rapport ainsi que le
poster demandé. Voici comment il doit être lu, sur la gauche se situent deux colonnes, une en vert et
une en bleu, dans la colonne en vert est indiqué le temps estimé en heures pour chaque tâche tandis
que la colonne bleue indique le temps réellement passé. En haut, dans les couleurs bleu clair, sont
indiquées les semaines et les jours de la semaine. Ainsi est représenté sur chaque ligne des différentes
tâches les temps estimés pour réaliser les tâches en vert et les temps passés en bleu, il est à noter qu’un
carré représente 8 heures normalement mais que, dû au fait que plusieurs tâches ont pu être réalisées
en parallèle, alors un carré n’est pas considéré comme faisant 8h dans tous les cas. Il est possible de
visualiser à deux reprises des fines lignes rouges qui précèdent le temps estimé, cette ligne représente le
nouveau temps estimé pour terminer la tâche si celle-ci n’a pas pu être réalisée dans les temps impartis.
Enfin, les temps totaux sont indiqués en bas à gauche du diagramme.

Dans la majorité des cas, les délais estimés ont été respectés. Bien qu’un léger dépassement ait eu
lieu à deux reprises, une gestion rigoureuse de l’organisation a permis de rattraper le temps perdu,
aboutissant ainsi à une réalisation finale plus rapide que prévue.

14.2 KPI

Figure 41 – KPI

Le KPI est représenté sous deux formes différentes, sur la droite est indiqué le pourcentage de temps
passé sur les six différentes parties du rapport ainsi que le transfert de savoir et l’écriture de ce rapport
en plus du poster. La représentation barométrique sur la gauche représente le pourcentage de réussite
de chaque partie, ainsi que l’avancée globale des tâches confiées, le respect du délai et le respect du
délai de chaque partie. Il apparaît que 38,7 % du temps total a été consacré à la rédaction du rapport
et au transfert de savoir. Cela souligne le rôle majeur de la documentation détaillée et du partage
d’informations, essentiels pour permettre à d’autres de comprendre le projet et d’assurer sa continuité.

41

14 Diagramme de Gantt et KPI (Key Performance Indicator)

Concernant les différentes sections du code développé, la partie 1 représente 25,4 % du temps total
alloué, et 44,3 % du temps cumulé des six parties. Cela reflète l’importance cruciale de la consolidation
des fondations du code ainsi que de l’appropriation du projet réalisé.

La représentation barométrique illustre l’avancement des six différentes sections du projet, ainsi que la
rédaction du rapport incluant le transfert de savoir. Chaque section ayant une valeur de 100 indique son
achèvement complet. Le respect du délai global atteint légèrement plus de 100 %, en raison d’un temps
total réellement passé légèrement inférieur à celui initialement estimé (voir diagramme de Gantt).
Enfin, le respect des délais pour les différentes tâches (barres en jaune) est de 92,86 %, puisque 2

28
d’entre elles ont nécessité une révision du temps imparti.

14.3 Conclusion sur la gestion de projet

Il peut ainsi être conclu que l’organisation mise en place durant ce stage a largement contribué à la
réussite du projet. En effet, très peu de retards ont été constatés, et grâce au système de réestimation
du temps mis en œuvre, les tâches ont pu être achevées sans compromettre le temps final. En effet,
16h de moins ont été réalisées par rapport au temps total estimé. Enfin, le temps consacré au transfert
de savoir via GitHub (voir section 13) ainsi qu’à la rédaction du présent rapport garantit la continuité
efficace du projet pour les opérations futures.

42

14
D

iagram
m

e
de

G
antt

et
K

P
I

(K
ey

P
erform

ance
Indicator)

Figure 42 – Diagramme de Gantt

43

15 Conclusion

15 Conclusion

Le code d’interopérabilité développé a été testé avec succès sur deux stations simultanées pendant une
période limitée, démontrant la fiabilité et l’efficacité de chaque étape décrite dans ce rapport. Les ré-
sultats obtenus confirment le bon fonctionnement du système, tant au niveau des stations qu’au niveau
du NAS, avec une organisation maîtrisée du transfert de données. La confidentialité des échanges a été
vérifiée via une analyse des trames sur Wireshark, et l’intégrité des données a été validée par l’injec-
tion de caractères erronés dans les empreintes numériques de Payload et Info, générant les réponses
attendues. Le débit de transfert dépend principalement de la qualité du réseau auquel chaque station
est connectée. Enfin, l’automatisation des stations répond aux exigences fixées, assurant une gestion
autonome des cycles ainsi que la prise en charge des cas d’urgence, notamment les coupures d’accès
Internet ou le remplissage de la mémoire.

Le transfert de savoir s’est révélé d’une utilité primordiale dans le cadre de ce projet. Il a permis à un
nouvel intervenant de s’approprier efficacement le code développé ainsi que la méthode d’installation
nécessaire à son bon fonctionnement sur une station. Par ailleurs, la gestion de projet a largement
contribué au succès global de l’opération. Elle a permis de coordonner les différentes phases du déve-
loppement et d’identifier les tâches critiques, sur lesquelles les efforts ont été concentrés afin d’assurer
un taux de réussite complet.

15.1 Les perspectives futures du projet

Afin d’éviter toute saturation du NAS en cas d’envoi simultané de données par plusieurs stations,
une architecture en réseau maillé est envisagée. Cette solution, rendue possible par l’utilisation de
Tailscale, permet une interconnexion directe entre les stations. Grâce à ce réseau maillé, les stations
peuvent communiquer entre elles et coordonner l’envoi global des données de manière synchronisée.
Cela réduit considérablement la sollicitation du processeur du NAS et améliore ainsi le traitement des
flux d’information.

Une application est actuellement en cours de développement afin de permettre une visualisation simple
et intuitive des différentes stations. Celle-ci affichera diverses informations utiles, comme le nombre
total de fichiers envoyés par chaque station, leurs noms, ainsi que la localisation géographique de ces
dernières. L’objectif est de faciliter le suivi en temps réel du réseau et d’optimiser la gestion globale
du système.

Enfin, si des financements supplémentaires peuvent être alloués au projet, une extension du réseau
sera envisagée, portant le nombre total de stations à six. Cette augmentation permettra d’obtenir une
couverture plus large et plus représentative du canal de Panama, assurant ainsi une estimation plus
précise et significative de l’impact de la pollution sur cette zone stratégique.

44

16 Références

16 Références
[1] Adrien.D. (21 Août 2022). Cron et crontab : le planificateur de tâches.
URL : https://www.linuxtricks.fr/wiki/cron-et-crontab-le-planificateur-de-taches
[2] Alexander V. Lukyanov. (11 Juin 2022). lftp - Sophisticated file transfer program.
URL : https://lftp.yar.ru/lftp-man.html
[3] Alexandre Slowik, Guillaume Séchet. (1 Juill 2021). Chaleur : une perception différente selon
l’humidité et les individus
URL : https://www.meteo-paris.com/actualites/chaleur-une-perception-differente-selon-l-
humidite-et-les-individus
[4] Astronomie-va. (30 nov 2022). Le spectre de l’atome d’hydrogène.
URL : https://www.astronomie-va.com/forum/viewtopic.php?t=3351
[5] Astropshop.eu. (s.d). Camera DSLR D5600a.
URL : https://www.astroshop.eu/astromodified-dslr-dslms/nikon-camera-dslr-d5600a/
p,53133

[6] Climats et voyages. (s.d). Climat - Panama.
Contenu utilisé : Côté sud.
URL : https://www.climatsetvoyages.com/climat/panama
[7] Gregory Kovalchuk. (4 Juill 2024). Shamir’s Secret Sharing : A Step-by-Step Guide with Py-
thon Implementation.
URL : https://medium.com/@goldengrisha/shamirs-secret-sharing-a-step-by-step-guide-with-
python-implementation-da25ae241c5d
[8] Moty Michaely. (Avr 2025). SFTP vs. FTPS benchmarks : file transfer speed comparison 2025.
URL : https://sftptogo.com/blog/sftp-vs-ftps-benchmarks/
[9] Pierrelm. (10 Avr 2025). Interpolation lagrangienne.
URL : https://fr.wikipedia.org/wiki/Interpolation_lagrangienne
[10] Robert Dougherty. (5 Oct 2023). Sécurité SFTP – Est-elle vraiment sécurisée ?
URL : https://www.kiteworks.com/fr/transfert-de-fichier-securise/securite-sftp-est-elle-vraiment-
securisee/#Comment_fonctionne_lSFTP

[11] STARS4ALL. (s.d.). STARS4ALL Foundation.
URL : https://foundation.stars4all.eu/
[12] Tailscale Inc. (s.d.). Site officiel de Tailscale : https://tailscale.com

[13] DATASHEET DiskStation DS1821+. (2021). High-capacity storage and data protection for
anyone.
URL : https://global.download.synology.com/download/Document/Hardware/DataSheet/
DiskStation/21-year/DS1821%2B/enu/Synology_DS1821%2B_Data_Sheet_enu.pdf?utm_
source
[14] Lyle Smith. (11 Mars 2021). Synology DiskStation DS1821+ Review.
URL : https://www.storagereview.com/review/synology-diskstation-ds1821-review?
utm_source

45

https://www.linuxtricks.fr/wiki/cron-et-crontab-le-planificateur-de-taches
https://lftp.yar.ru/lftp-man.html
https://www.meteo-paris.com/actualites/chaleur-une-perception-differente-selon-l-humidite-et-les-individus
https://www.meteo-paris.com/actualites/chaleur-une-perception-differente-selon-l-humidite-et-les-individus
https://www.astronomie-va.com/forum/viewtopic.php?t=3351
https://www.astroshop.eu/astromodified-dslr-dslms/nikon-camera-dslr-d5600a/p,53133
https://www.astroshop.eu/astromodified-dslr-dslms/nikon-camera-dslr-d5600a/p,53133
https://www.climatsetvoyages.com/climat/panama
https://medium.com/@goldengrisha/shamirs-secret-sharing-a-step-by-step-guide-with-python-implementation-da25ae241c5d
https://medium.com/@goldengrisha/shamirs-secret-sharing-a-step-by-step-guide-with-python-implementation-da25ae241c5d
https://sftptogo.com/blog/sftp-vs-ftps-benchmarks/
https://fr.wikipedia.org/wiki/Interpolation_lagrangienne
https://www.kiteworks.com/fr/transfert-de-fichier-securise/securite-sftp-est-elle-vraiment-securisee/#Comment_fonctionne_lSFTP
https://www.kiteworks.com/fr/transfert-de-fichier-securise/securite-sftp-est-elle-vraiment-securisee/#Comment_fonctionne_lSFTP
https://foundation.stars4all.eu/
https://tailscale.com
https://global.download.synology.com/download/Document/Hardware/DataSheet/DiskStation/21-year/DS1821%2B/enu/Synology_DS1821%2B_Data_Sheet_enu.pdf?utm_source
https://global.download.synology.com/download/Document/Hardware/DataSheet/DiskStation/21-year/DS1821%2B/enu/Synology_DS1821%2B_Data_Sheet_enu.pdf?utm_source
https://global.download.synology.com/download/Document/Hardware/DataSheet/DiskStation/21-year/DS1821%2B/enu/Synology_DS1821%2B_Data_Sheet_enu.pdf?utm_source
https://www.storagereview.com/review/synology-diskstation-ds1821-review?utm_source
https://www.storagereview.com/review/synology-diskstation-ds1821-review?utm_source

	dcd0ce750af9ba32c90987a7be53267466e02c7544d550f84bbdbfad71c37549.pdf
	Introduction
	Présentation de l'entreprise
	Contexte
	Analyse de l’existant
	Cahier des charges
	Vue d'ensemble

	INDI
	Fonctionnement

	Partie 1 : De l'éxécution du code jusqu'au moment d'avant l'envoie
	Diagramme général et explication
	Exécution de main.c et traitement des données de chaque équipement (a)
	Fonction execution, Séquenceur (b)
	Fonction Maketram, organisation des métadonnées (c)
	Fonction Log_NAS, information de connexion (d)
	Fonction Connect_To_NAS, transfert des données vers le NAS (e)
	Fonction ChecksumGenerate, réalisation des empreintes numériques (f)

	dcd0ce750af9ba32c90987a7be53267466e02c7544d550f84bbdbfad71c37549.pdf
	Partie 3 : Transfert des données
	Raisons ayant conduit à l’adoption du protocole SFTP
	Benchmarking Download et Upload SFTP/FTPS

	Tailscale

	Partie 4 : Traitement des données lors de leur réception
	Diagramme général et explication
	Partie a : Recherche de fichier CryptFile existant
	Partie b : Récupération des valeurs du fichier CryptFile.txt
	Partie c : Réalisation du déchiffrement
	Partie d : Organisations des fichiers

	Partie 5 : Déchiffrement des empreintes numériques
	Diagramme général et explication
	Première étape : Opération inverse du XOR
	Deuxième étape : Opération inverse de César
	Troisième étape : Interpolation lagrangienne

	Partie 6 : Interface, lancement et contrôle de la station
	Interface et lancement
	Contrôle de la station

	Transfert de savoir
	Diagramme de Gantt et KPI (Key Performance Indicator)
	Explication du diagramme de gantt et point de vue sur l'organisation du temps
	KPI
	Conclusion sur la gestion de projet

	Conclusion
	Les perspectives futures du projet

	Références

